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Abstract

In this paper we extend Nakai’s result on the boundedness of a general-

ized fractional integral operator from a generalized Morrey space to another

generalized Morrey or Campanato space.
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1. Introduction and Main results

For a given function ρ : (0,∞) −→ (0,∞), let Tρ be the generalized fractional
integral operator, given by

Tρf(x) =
∫

Rn

f(y)ρ(|x− y|)
|x− y|n dy,

and put

T̃ρf(x) =
∫

Rn

f(y)
(

ρ(|x− y|)
|x− y|n − ρ(|y|)(1− χBo(y))

|y|n
)

dy,
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the modified version of Tρ, where Bo is the unit ball about the origin, and χBo
is

the characteristic function of Bo.

In [4], Nakai proved the boundedness of the operators T̃ρ and Tρ from a general-
ized Morrey space M1,φ to another generalized Morrey space M1,ψ or generalized
Campanato space L1,ψ. More precisely, he proved that

‖Tρf‖M1,ψ
≤ C‖f‖M1,φ

and ‖T̃ρf‖L1,ψ
≤ C‖f‖M1,φ

,

where C > 0, with some appropriate conditions on ρ, φ and ψ. Using the techniques
developed by Kurata et.al. [1], we investigate the boundedness of these operators
from generalized Morrey spaces Mp,φ to generalized Morrey spaces Mp,ψ or gen-
eralized Campanato spaces Lp,ψ for 1 < p < ∞.

The generalized Morrey and Campanato spaces are defined as follows. For a
given function φ : (0,∞) −→ (0,∞), and 1 < p < ∞, let

‖f‖Mp,φ
= sup

B

1
φ(B)

(
1
|B|

∫

B

|f(y)|pdy

) 1
p

,

and

‖f‖Lp,φ
= sup

B

1
φ(B)

(
1
|B|

∫

B

|f(y)− fB |pdy

) 1
p

,

where the supremum is taken over all open balls B = B(a, r) in Rn, |B| is the
Lebesgue measure of B in Rn, φ(B) = φ(r), and fB = 1

|B|
∫

B
f(y)dy. We define

the Morrey space Mp,φ by

Mp,φ = {f ∈ Lp
loc(R

n) : ‖f‖Mp,φ
< ∞},

and the Campanato space Lp,φ by

Lp,φ = {f ∈ Lp
loc(R

n) : ‖f‖Lp,φ
< ∞}.

Our results are the following:

Theorem 1.1 If ρ, φ, ψ : (0,∞) −→ (0,∞) satisfying the conditions below :

1
2
≤ t

r
≤ 2 ⇒ 1

A1
≤ φ(t)

φ(r)
≤ A1, and

1
A2

≤ ρ(t)
ρ(r)

≤ A2 (1)

∫ 1

0

ρ(t)
t

dt < ∞, and for allr > 0,we have
∫ ∞

r

φ(t)p

t
dt ≤ A3φ(r)p

, (2)

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ ∞

r

ρ(t)φ(t)
t

dt ≤ A4ψ(r), for allr > 0, (3)

where Ai > 0 are independent of t, r > 0, then for each 1 < p < ∞ there exists
Cp > 0 such that

‖Tρf‖Mp,ψ
≤ Cp ‖f‖Mp,φ

.
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Theorem 1.2 If ρ, φ, ψ : (0,∞) −→ (0,∞) satisfying the conditions below

1
2
≤ t

r
≤ 2 ⇒ 1

A1
≤ φ(t)

φ(r)
≤ A1, and

1
A2

≤ ρ(t)
ρ(r)

≤ A2 (4)

∫ 1

0

ρ(t)
t

dt < ∞, and for allr > 0,we have
∫ ∞

r

φ(t)p

t
dt ≤ A3φ(r)p

, (5)

|ρ(r)
rn

− ρ(t)
tn
| ≤ A4|r − t| ρ(r)

rn+1
, for

1
2
≤ t

r
≤ 2, (6)

φ(r)
∫ r

0

ρ(t)
t

dt + r

∫ ∞

r

ρ(t)φ(t)
t2

dt ≤ A5ψ(r), for allr > 0, (7)

where Ai > 0 are independent of t, r > 0, then for each 1 < p < ∞ there exists
Cp > 0 such that

‖T̃ρf‖Lp,ψ
≤ Cp ‖f‖Mp,φ

.

2. Proof of the Theorems

To prove the theorems, we shall use the following result of Nakai [2] (in a slightly
modified version) about the boundedness of the standard maximal function Mf on
a generalized Morrey space Mp,φ. The standard maximal function Mf is defined
by

Mf(x) = sup
B3x

1
|B|

∫

B

|f(y)|dy, x ∈ Rn,

where the supremum is taken over all open balls B containing x.

Theorem 2.1 (Nakai).If φ : (0,∞) −→ (0,∞) satisfying the conditions below :

(a). 1
2 ≤ t

r ≤ 2 ⇒ 1
A1
≤ φ(t)

φ(r) ≤ A1,

(b).
∫∞

r
φ(t)p

t dt ≤ A2φ(r)p
, for all r > 0,

where Ai > 0 are independent of t, r > 0, then for each 1 < p < ∞ there exists
Cp > 0 such that

‖Mf‖Mp,φ
≤ Cp ‖f‖Mp,φ

.

From now on, C and Cp will denote positive constants, which may vary from
line to line. In general, these constants depend on n.
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Proof of Theorem 1.1
For x ∈ Rn, and r > 0, write

Tρf(x) =
∫

|x−y|<r

f(y)ρ(|x− y|)
|x− y|n dy +

∫

|x−y|≥r

f(y)ρ(|x− y|)
|x− y|n dy = I1(x) + I2(x).

Note that, for t ∈ [2kr, 2k+1r], there exist constants Ci > 0 such that

ρ(2kr) ≤ C1

∫ 2k+1r

2kr

ρ(t)
t

dt

and

ρ(2kr)φ(2kr) ≤ C2

∫ 2k+1r

2kr

ρ(t)φ(t)
t

dt.

So, we have

|I1(x)| ≤
∫

|x−y|<r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤
−1∑

k=−∞

∫

2kr≤|x−y|<2k+1r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤ C

−1∑

k=−∞

ρ(2kr)
(2kr)n

∫

|x−y|<2k+1r

|f(y)|dy

≤ C

−1∑

k=−∞
ρ(2kr)Mf(x)

≤ CMf(x)
−1∑

k=−∞

∫ 2k+1r

2kr

ρ(t)
t

dy

≤ CMf(x)
∫ r

0

ρ(t)
t

dy

≤ C
ψ(r)
φ(r)

Mf(x).
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Meanwhile,

|I2(x)| ≤
∫

|x−y|≥r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤
∞∑

k=0

∫

2kr≤|x−y|<2k+1r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤ C

∞∑

k=0

ρ(2k+1r)
(2kr)n

∫

|x−y|<2k+1r

|f(y)|dy

≤ C

∞∑

k=0

ρ(2k+1r)φ(2k+1r)‖f‖Mp,φ

≤ C‖f‖Mp,φ

∞∑

k=0

∫ 2k+2r

2k+1r

φ(t)ρ(t)
t

dt

≤ C‖f‖Mp,φ

∫ ∞

r

φ(t)ρ(t)
t

dt

≤ Cψ(r)‖f‖Mp,φ
.

Now, for 1 ≤ p < ∞, we have

|Tρf(x)|p ≤ 2p−1(|I1(x)|p + |I2(x)|p),
and by Nakai’s Theorem, we have for all balls B = B(a, r)

1
ψ(r)p|B|

∫

B

|I1(x)|pdx ≤ C

φ(r)p|B|
∫

B

Mf(x)p
dx ≤ C‖Mf‖p

Mp,φ
≤ Cp ‖f‖p

Mp,φ
,

and
1

ψ(r)p|B|
∫

B

|I2(x)|pdx ≤ C‖f‖p
Mp,φ

.

Combining the two estimates, we obtain

1
ψ(r)p|B|

∫

B

|Tρf(x)|pdx ≤ Cp ‖f‖p
Mp,φ

,

and the result follows. ¤

Proof of Theorem 1.2
Let B̃ = B(a, 2r). For x ∈ B = B(a, r), we have

T̃ρf(x)− CB = E1
B(x) + E2

B(x),

where

CB =
∫

Rn

f(y)
(

ρ(|a− y|)(1− χ eB(y))
|a− y|n − ρ(|y|)(1− χBo(y))

|y|n
)

dy,
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E1
B(x) =

∫
eB f(y)

ρ(|x− y|)
|x− y|n dy,

and

E2
B(x) =

∫
eBc

f(y)
(

ρ(|x− y|)
|x− y|n − ρ(|a− y|)

|a− y|n
)

dy.

From (6), we have

|CB | ≤ C

(∫

|a−y|<k

|f(y)|dy + |a|
∫

|a−y|≥k

|f(y)| ρ(|a− y|)
|a− y|n+1 dy

)
,

where k = max(2|a|, 2r), and so we know that CB is finite for every ball B =
B(a, r).

With the same technique as in the proof of the previous theorem, we have

|E1
B(x)| ≤

∫

|a−y|<2r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤
∫

|x−y|<3r

|f(y)|ρ(|x− y|)
|x− y|n dy

≤ CMf(x)
∫ 3r

0

ρ(t)
t

dt

≤ CMf(x)
∫ r

0

ρ(t)
t

dt,

and by (6)

|E2
B(x)| ≤

∫

|a−y|≥2r

|f(y)|
∣∣∣∣
ρ(|x− y|)
|x− y|n − ρ(|a− y|)

|a− y|n
∣∣∣∣ dy

≤ C|x− a|
∫

|a−y|≥2r

|f(y)| ρ(|a− y|)
|a− y|n+1 dy

≤ C‖f‖Mp,φ
r

∫ ∞

r

ρ(t)φ(t)
t2

dt,

and the result follows as before. ¤

3. Remark

We also suspect that T̃ρ, the modified version of Tρ, is bounded from Lp,φ to Lp,ψ

under the same hypothesis on ρ, φ and ψ as in Theorem 1.2. However, we have
not obtained the proof and the research in this direction is still ongoing.
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